Efficient Data Propagation Protocols in Wireless Sensor Networks

Azzedine Boukerche and Yiannis Chatzigiannakis and Sotiris Nikoletseas

2004
Efficient Data Propagation Protocols in Wireless Sensor Networks *

Azzedine Boukerche † Ioannis Chatzigiannakis ‡§ Sotiris Nikoletseas ‡§

November 15, 2004

Abstract

Wireless Sensor Networks are comprised of a vast number of ultra-small fully autonomous computing and communication devices, with very restricted energy and computing capabilities, that co-operate to accomplish a large sensing task. In this work: a) We propose extended versions of two data propagation protocols: the Sleep-Awake Probabilistic Forwarding Protocol (SW-PFR) and the Hierarchical Threshold sensitive Energy Efficient Network protocol (H-TEEN). These non-trivial extensions aim at improving the performance of the original protocols, by introducing sleep-awake periods in the PFR case to save energy, and introducing a hierarchy of clustering in the TEEN case to better cope with large networks areas, b) We implemented the two protocols and performed an extensive experimental comparison of various important measures of their performance with a focus on energy consumption, c) We investigate in detail the relative advantages and disadvantages of each protocol and discuss and explain their behavior, d) We discuss a possible hybrid combination of the two protocols towards optimizing certain goals, e) We propose a protocol that may vary the transmission range, towards achieving obstacle avoidance and energy balance.

1 Introduction

Recent dramatic developments in micro-electro-mechanical (MEMS) systems, wireless communications and digital electronics have already led to the development of small in size, low-power, low-cost sensor devices. Such extremely small devices integrate sensing, data processing and communication capabilities. Large numbers of sensor nodes can be deployed in areas of interest (such as inaccessible terrains or disaster places) and use self-organization and collaborative methods to form a sensor network.

Their wide range of applications is based on the possible use of various sensor types (i.e. thermal, visual, seismic, acoustic, radar, magnetic, etc.) in order to monitor a wide variety of conditions (e.g. temperature, object presence and movement, humidity, pressure, noise levels etc.). Thus, sensor networks can be used for continuous sensing, event detection, location sensing as well as micro-sensing. Hence, sensor networks have important applications, including (a) military (like forces and equipment monitoring, battlefield surveillance, targeting, nuclear, biological and chemical attack detection), (b) environmental applications (such as fire detection, flood detection, precision agriculture), (c) health applications (like telemonitoring of human physiological data) and (d) home applications (e.g. smart environments and home automation). For an excellent survey of wireless sensor networks see [1]. For a focused survey of energy efficient data propagation protocols, see [3, 4].

Note however that the efficient and robust realization of such large, highly-dynamic, complex, non-conventional networking environments is a challenging algorithmic and technological task. Features including the huge number of sensor devices involved, the severe power, computational and memory limitations, their dense deployment and frequent failures, pose new design and implementation aspects which are essentially different not only with respect to distributed computing and systems approaches but also to ad-hoc networking techniques.

*This work has been partially supported by the IST Programme of the European Union under contract numbers IST-2004-001907 (DELIS) and IST-2001-33135 (CRESO). A Preliminary version of this work has appeared in ANSS 04 [2, 21].

†SITE, University of Ottawa, Canada, Email: boukerche@site.uottawa.ca

‡Computer Technology Institute, P.O. Box 1122, 26110 Patras, Greece, Emails: {ichatz,nikole}@cti.gr

§Dept of Computer Engineering and Informatics, University of Patras, 26500 Patras, Greece.
1.1 Contribution:

We study the problem of multiple event detection and propagation, i.e. the local sensing of a series of crucial events and the energy efficient propagation of data reporting the realization of these events to a (fixed or mobile) control center. The control center could in fact be some human authorities responsible of taking action upon the realization of the crucial event. We use the term “sink” for this control center. We note that this problem generalizes the single event propagation problem (w.r.t. to [5, 6, 9–11]) and poses new challenges for designing efficient data propagation protocols. The protocols we present here can also be used for the more general problem of data propagation in sensor networks (see [17]).

Under these more general and realistic (in terms of motivation by practice applications) modelling assumptions, we have implemented and experimentally evaluated, two information propagation protocols: (a) The Sleep-Awake Probabilistic Forwarding Protocol (SW-PFR) that avoids flooding by favoring in a probabilistic way certain “close to optimal” data transmissions and also allows particles to alternate between sleeping and awake modes to save energy, (b) the hierarchical version of the Threshold sensitive Energy Efficient Network Protocol (H-TEEN), where particles self-organize into clusters and build a tree of transmissions, propagating data only to their parent (cluster-head) in this tree. We note that we had to carefully design the protocols to work under the new network models.

We propose, implement and evaluate using simulation a modified version of the TEEN protocol introduced in [19]. In particular, we extended the concept of clustering used in the original TEEN protocol to that of hierarchical clustering. This possibility was discussed in the original paper. We show that in large area networks and when the number of layers in the hierarchy is small, TEEN tends to consume a lot of energy, because of long distance transmissions. On the other hand, when the number of layers increases, the transmissions become shorter, however there is a significant overhead in the setup phase as well as the operation of the network. In the light of the above, we chose to implement a 4-layer hierarchical clustering. The main idea behind the hierarchical clustering is to enable the TEEN protocol to operate in networks that occupy large areas.

As opposed to [7] (where a 2-dimensional lattice deployment of smart dust particles has been used) we here extend the network model to the general case of particle deployment according to a random, uniform distribution. We further extend the PFR protocol and the network model by enabling the smart dust particles to periodically enter a power save mode, which we call the sleeping mode. Finally, we implement PFR so as to efficiently handle not only a single event, as described in [5–7], but to propagate multiple events.

The extensive simulations we have performed show that both protocols are successful. In the setting we considered, SW-PFR seems more robust in the case of high rates of event generation and large networks (considering the area they occupy), while H-TEEN seems to perform better in smaller networks. We also concluded that the values of certain parameters, such as the radius of transmission, are highly critical for the performance of the SW-PFR protocol, given the network area and the number of the particles spread, and we investigate the precise effect of such parameters on performance.

In the light of the above, we also propose and discuss a hybrid protocol combining the two protocols and an intermediate randomization switching phase between them. This hybrid protocol can be parameterized towards achieving certain desired goals and trade-offs.

1.2 Discussion of Selected Related Work:

A family of negotiation-based information dissemination protocols suitable for wireless sensor networks is presented in [14]. Sensor Protocols for Information via Negotiation (SPIN) focus on the efficient dissemination of individual sensor observations to all the sensors in a network. However, in contrast to classic flooding, in SPIN sensors negotiate with each other about the data they possess using meta-data names. These negotiations ensure that nodes only transmit data when necessary, reducing the energy consumption for useless transmissions.

A data dissemination paradigm called directed diffusion for sensor networks is presented in [17], where data-generated by sensor nodes is named by attribute-value pairs. An observer requests data by sending interests for named data; data matching the interest is then “drawn” down towards that node by selecting a single path or through multiple paths by using a low-latency tree. [16] presents an alternative approach that constructs a greedy incremental tree that is more energy-efficient and improves path sharing.

A different approach for propagating information to the sink is to use routing techniques similar to those used in mobile ad-hoc networks ([22]). In [13] a clustering-based protocol is given that utilizes randomized rotation of local cluster heads to evenly distribute the energy load among the sensors in the network. In [19] a new energy efficient
rout protocol is introduced that does not provide periodic data monitoring (as in [13]), but instead nodes transmit data only when sudden and drastic changes are sensed by the nodes. As such, this protocol is well suited for time critical applications and compared to [13] achieves less energy consumption and response time.

Efficient collision avoidance schemes for wireless sensor networks are proposed and investigated in detail in [8].

2 The Model

Sensor networks are comprised of a vast number of ultra-small homogenous sensors, which we here call “grain” particles. Each grain particle is a fully-autonomous computing and communication device, characterized mainly by its available power supply (battery) and the energy cost of computation and transmission of data. Such particles (in our model here) cannot move. We adopt here (as a starting point) a two-dimensional (plane) framework: A smart dust cloud (a set of particles) is spread in an area (for a graphical presentation, see fig. 1). Note that a two-dimensional setting is also used in [13, 14, 16, 17, 19].

Definition 1 Let \(n \) be the number of smart dust particles and let \(d \) (usually measured in numbers of particles/m\(^2\)) be the density of particles in the area.

There is a single point in the network area, which we call the sink \(S \), and represents a control center where data should be propagated to. Furthermore, we assume that there is a set-up phase of the smart dust network, during which the smart cloud is dropped in the terrain of interest, when using special control messages (which are very short, cheap and transmitted only once) each smart dust particle is provided with the direction of \(S \). By assuming that each smart-dust particle has individually a *sense of direction*, and using these control messages, each particle is aware of the general location of \(S \).

Each particle is equipped with a set of monitors (sensors) for light, pressure, humidity, temperature etc. Each particle may have two communication modes: a *broadcast* (digital radio) *beacon mode* which can be also a directed transmission of angle \(\alpha \) around a certain line (possibly using some special kind of antenna, see fig. 2) and a *directed to a point* data transmission mode (usually via a laser beam). Both the transmission range (which we denote by \(R \)) and the transmission angle (let it be \(\alpha \)) can vary. Note that the protocols we study in this work can operate even under the broadcast communication mode. The laser possibility is added for reducing energy dissipation in long distance transmissions.

![Figure 1: A Smart Dust Cloud](image1.png)

![Figure 2: Directed transmission of angle \(\alpha \)](image2.png)
Each particle can be in one of four different modes at any given time, regarding the energy consumption. These modes are: (a) transmission of a message, (b) reception of a message, (c) sensing of events and (d) sleeping. During the sleeping mode, particle ceases any communication with the environment, thus it is unable to receive any message or sense an event. In our model, we assume that the energy consumption of a sleeping particle is negligible, but it needs a certain amount of energy to return to the sensing state.

Following [13], for the case of transmitting and receiving a message we assume the following simple model where the radio dissipates E_{elec} to run the transmitter and receiver circuitry and ϵ_{amp} for the transmit amplifier to achieve acceptable SNR (signal to noise ratio). We also assume an r^2 energy consumption due to channel transmission at distance r. Thus to transmit a k-bit message at distance r in our model, the radio expends

$$E_T(k, r) = E_{T-elec}(k) + E_{T-amp}(k, r)$$

and to receive this message, the radio expends

$$E_R(k) = E_{R-elec}(k)$$

$$E_R(k, r) = E_{elec} \cdot k$$

where E_{T-elec}, E_{R-elec} stand for the energy consumed by the transmitter’s and receiver’s electronics, respectively.

Concluding, there are four different kinds of energy dissipation which are:

- E_T: Energy dissipation for transmission.
- E_R: Energy dissipation for receiving.
- E_{idle}: Energy dissipation for idle state.
- $E_{powerup}$: Energy dissipation for returning from sleeping state.

For the idle state, we assume that the energy consumed for the circuity is constant for each time unit and equals E_{elec} (the time unit is 1 second). On the other hand, the power up energy equals three times the amount of energy consumed in a time unit during the idle state, that is $3 \cdot E_{elec}$.

The particles in the H-TEEN protocol do not exploit the ability to get to sleeping mode, thus in that case the energy dissipation is characterized by the rest three types of energy consumption.

Finally, we assume that each particle, in protocol H-TEEN, does not spend any amount of energy to listen what the other nodes, of its cluster, send to the cluster head.

We note that in our simulations we explicitly measure the above energy costs. Our model, although simple, depicts accurately enough the technological specifications of real smart dust systems. Similar models are being used by other researchers in order to study sensor networks (see [13, 19]). In contrast to [17, 18], our model is weaker in the sense that no geolocation abilities are assumed (e.g. a GPS device) for the smart dust particles leading to more generic and thus stronger results. In [15] a thorough comparative study and description of smart dust systems is given, from the technological point of view.

3 The Problem

Assume the realization of a series of K crucial events E_i, with each event being sensed by a single particle p_i ($i = 1, 2, \ldots, K$). Then the multiple event propagation problem \mathcal{P} is the following:

“How can each particle p_i ($i = 1, 2, \ldots, K$), via cooperation with the rest of the grain particles, efficiently (mainly with respect to energy) propagate information $info(E_i)$ reporting realization of event E_i to the sink S?”

We remark that this problem is a generalization of the single event propagation problem, which is more difficult to cope with.

Certainly, because of the dense deployment of sensor particles close to each other, communication between two particles is much more energy efficient than direct transmission to the sink. Furthermore, short-range hop-by-hop
transmissions can effectively overcome some of the signal propagation effects in long-distance transmissions and may help to smoothly adjust propagation around obstacles. Finally, the low energy transmission in multi-hop communication may enhance security, protecting from undesired discovery of the data propagation operation.

On the other hand, long-range transmissions require the participation of few particles and therefore reduce the overhead on particle resources and provide better network response times. Furthermore, long-range communication permits the deployment of clustering and other efficient techniques, developed for ad-hoc wireless networks. In particular, a clustering scheme enables cluster heads to reduce the amount of transmitted data by aggregating information.

The above suggest that many diverse approaches exist to the solution of the multiple event propagation problem P. In any case, the objective is to propagate most, if not all, of the events E_i to the sink efficiently. Note that, because of the multiplicity of events sensed and the small energy supplies, it is not obvious at all that all events sensed manage to be reported to the sink. Efficiency means to minimize the energy consumption in the sensor network, either by minimizing the number of transmissions and also minimize duplicate messages, observed in multi-hop delivery, or by reducing data size (by aggregations techniques) and the number of transmissions (by clustering) in long-range communication. Note that an appropriate MAC protocol is required in either case to handle collisions and avoid message retransmissions [8, 23].

Furthermore, an interesting aspect of the problem under investigation is the lifetime of particles, since it affects the ability of the network to propagate data to the sink, because available routes are reduced as more particles consume their energy resources and “die”, see also [12].

4 The Sleep-Awake Probabilistic Forwarding Protocol (SW-PFR)

The basic idea of the protocol lies in probabilistically favouring transmissions towards the sink within a thin zone of particles around the line connecting the particle sensing the event E and the sink (see Fig. 3 for graphical representation). Although data propagation along this line is optimal with respect to energy and time cost, such propagation is not always feasible. This is true because, even if initially this direct line was appropriately occupied by sensors, certain sensors on this line might become inactive, either permanently (because their energy has been exhausted) or temporarily (because these sensors might enter a sleeping mode to save energy).

The protocol evolves in two phases:

Phase 1: The “Front” Creation Phase. During this initial phase a sufficiently large front is built to ensure that the data propagation process survives for an appropriately large period of time. This front is created by using a “flooding” mechanism for a configurable number of steps. According to this mechanism, the header of each message includes a counter called β. This counter is set to a predefined value by the source particle, when the latter generates the message relative to the sensed event. Following this initialization, each particle, upon receiving a pertinent message containing a positive β counter, reduces its value by 1 and deterministically forwards the message towards the sink. In order to do so, each particle uses directed “angle” transmission to broadcast data to all of its neighbors, that lie in the direction of the sink. When the β counter becomes zero, the particle proceeds to the second phase of the SW-PFR protocol. Ultimately, the beta counter determines the length of the first phase of the SW-PFR protocol.

Phase 2: The Probabilistic Forwarding Phase. In this second phase, data propagation is done in a probabilistic manner. Each particle calculates a probability of participation in the propagation process. The closer a particle is to
the optimal transmission line, connecting the source node E detecting an event and the sink S, the higher its probability to forward data pertinent to that particular sense event.

The “forwarding probability” P_{fwd} is chosen to be $P_{fwd} = \frac{\phi}{\pi}$ where ϕ is the angle defined by (a) the line connecting the particle performing the random choice and the sensor that initially sensed the event and (b) the line connecting this node to the sink. Remark that indeed a bigger angle ϕ suggests a sensor position closer to the direct line between E and S. Figure 4 displays this graphically. Clearly, when $\phi = \pi$, then the sensor lies on this line. Thus, we get that $\phi_1 > \phi_2$ implies that for the corresponding particles p_1, p_2, p_1 is closer to the E-S line than p_2, thus $P_{fwd}(p_1) = \frac{\phi_1}{\pi} > \frac{\phi_2}{\pi} = P_{fwd}(p_2)$

Angle ϕ calculation. Under appropriate (and realistic) modelling assumptions for sensor particles, angle ϕ can be locally calculated running a simple subprotocol (see [7] for detailed discussion). Such modelling assumptions include a) the ability of sensor particles to estimate the direction of a received transmission (e.g. by direction-sensing antennae), b) to estimate the distance from a nearby particle that did the transmission (e.g. via signal attenuation estimation techniques), c) to have a common co-ordinates system and d) to know the direction towards the sink (this is possibly done during a set-up phase). Note that we do not need GPS information or global network structure knowledge.

The SW-PFR protocol proposed in this paper is actually a non-trivial modification of the PFR protocol proposed in [7]. There are two major additions made to that protocol. First, the current version of PFR, SW-PFR, targets sensor-networks with multiple event generations. In particular, at any given time there could be more than one event being propagated towards the sink. In order to avoid repeated transmissions and infinite loops, each particle is provided with a limited “cache memory”. In this cache, the particle registers the event IDs for each distinct event it has “heard of”. Each event ID’s uniqueness is guaranteed, by choosing it to be a concatenation of the source particle ID and the timestamp of the sensed event. Upon the receival of a message, a particle checks whether the pertinent event is enlisted in its cache. If that event is not in the particle’s cache, it is registered and then the particle proceeds to the proper actions defined by the PFR protocol. However, if the event was already seen, the message is dropped and no further action is taken.

Presumably, a relatively small amount of memory (e.g. up to 2MB) would be adequate for such purpose. Note, that in the future the particle cache could enforce a policy of limited lifetime for each of its contents, thus reducing the space requirements to a minimum. Data aggregation also poses a challenge for further study and efficiency assessment.

As a second modification, this version of PFR, SW-PFR, encompasses an intriguing sleep-awake scheme. According to this scheme, each particle goes through alternating periods of “sleeping” and “awake”. During a sleeping period, the particles cease any communication with the environment, thus the power consumption is assumed to be minimal and practically insignificant, whereas when a particle is awake, it consumes the regular amount of energy. In addition, a special energy amount is considered to be spent during the transition from “sleep” to “awake”.

We assume that the sleeping/awake time periods alternate stochastically independently in each particle and have durations s, w respectively.

Let now $\gamma = \frac{s}{w}$ i.e. γ represents the energy saving specifications of the smart dust particles (a typical value for γ may be 100). Then,

Definition 2 The energy saving specification is: $en = \frac{s}{s+w} = 1 - \frac{1}{1+\gamma}$
A Hierarchical Threshold-sensitive Energy Efficient Network Protocol (H-TEEN)

The Threshold sensitive Energy Efficient Network protocol (TEEN) was introduced in [19] and is essentially an interesting modification of the fundamental LEACH protocol (Low-Energy Adaptive Clustering Hierarchy, [13]) for reactive sensor networks. By reactive sensor networks we mean networks where particles immediately react only to sudden and drastic changes in the value of a sensed attribute. The basic concepts in TEEN are the clustering of particles and the use of thresholds in order to decide whether a particle should transmit data to the sink.

TEEN uses particle self-organization into clusters, originally proposed in LEACH, in order to reduce transmissions. We have extended the concept of clustering to a hierarchical clustering, a proposal also made in the original paper. A tree of transmissions is built, where each particle transmits data only to its parent (cluster-head) in this tree. To be more specific, TEEN’s operation is divided into rounds, and every round is further divided into a short set-up phase, where the organization in clusters occurs, and a relatively long steady-phase which is the phase where normal network operation occurs.

Setup phase: In this phase, each particle decides on whether it should become a cluster-head or not. This decision is based on a fixed probability \(P_c \) (in our simulations \(P_c = 0.05 \)) and on whether it has been a cluster head in the last \(1/P_c \) rounds. Specifically, a particle \(n \) picks a random number from 0 to 1 and compares it to a threshold \(T(n) \), which is calculated in every round as

\[
T(n) = \begin{cases}
\frac{P_c}{1-P_c \cdot (r \mod \frac{1}{P_c})} & \text{if } n \in G \\
0 & \text{otherwise}
\end{cases}
\]

Here \(r \) is the current round and \(G \) is the set of particles that have not been elected as cluster-heads in the last \(1/P_c \) rounds. As we can see, this threshold is growing as rounds pass and so we can ensure that every node alive will become a cluster-head at some point within \(1/P_c \) rounds. The same process begins over after \(1/P_c \) rounds. After a particle decides to become a cluster-head, it broadcasts an advertisement message to the entire network. The other particles hear the advertisements from all the cluster-heads, and choose the cluster-head they belong to based on the strength of the signal they received.

When a particle decides on which cluster it wants to belong to, it transmits a response back to the cluster-head of the corresponding cluster. This is probably done using some kind of CSMA MAC protocol to avoid collisions. The cluster-head at some point decides that it has heard all of the responses from the particles in its cluster using a timeout and then sets up a TDMA schedule for transmissions. It then broadcasts this schedule to the particles in its cluster.

At this time, the next level of hierarchy can be built. We extended the original TEEN paper with the following scheme for hierarchical clustering. The nodes that have become cluster-heads, decide on whether they should pass on to the next level of hierarchy with the same probability \(P_b \) (in our simulations \(P_b = 0.1 \)) and on whether the number of cluster-heads advertisements in the previous level of hierarchy received is less than eight. If a particle decides on moving to the next level of hierarchy it broadcasts an advertisement message again and only cluster-heads of the previous level decide to which cluster-head of the next level they belong to, and this process is repeated for the next levels. In our simulation we have used four levels of hierarchy.

Steady phase: After all the levels of clustering have been set up, the actual data transmissions from particles can begin. The transmissions from particles to cluster-heads are done according to the TDMA schedule of each cluster. To reduce interference between different neighboring clusters, any cluster-head picks randomly a code from a certain list and so particles in each cluster use different CDMA codes. Finally, there are two thresholds, the “hard” and the “soft” threshold, which determine when a particle must transmit data to the base station, since particles sense continuously the field. The first one is a value beyond which the particle enters an alarm state. The second one is a small change in the value of the sensed attribute that took place in the field.

By the first time hard threshold is reached, the particle stores the sensed value and transmits it to the base station. If the next sample differs from the stored value by at least the soft threshold, this information should be transmitted back to the base station. An example of these thresholds is when the measured attribute is temperature; we set the hard threshold to be 30° and the soft threshold any change over 0.5°. In our simulations we used the notion of an event, meaning a situation where particles must report to the base station, rather than just random values of the sensed attributes. So, when an event occurs, it is implied that these thresholds are outreached.
6 Implementation Details

For the purpose of the comparative study of the previously described protocols, we have designed a new simulator, which we named simDust, that was implemented in Linux using C++ and the LEDA [20] algorithmic and data structures library.

Another interesting feature of our simulator, is the ability to experiment with very large networks. In fact, the complexity of extending existing networks simulators, and their (in cases of large instances) time consuming execution, were two major reasons for creating this simulator. simDust enables the protocol designer to implement the protocol using just C++ and avoids complicate procedures that involve the use of more than one programming language.

Additionally, simDust generates all the necessary statistics at the end of each simulation based on a big variety of metrics that are implemented (such as delivery percentage, energy consumption, delivery delay, longlivety, etc.)

The key points in simDust’s implementation are the following:

Operation in rounds: A basic concept used in the simulator is that its operation is divided into discrete rounds, both in SW-PFR and H-TEEN. One round represents a time interval in which a particle can transmit or receive a message and process it according to the protocol that is being simulated.

MAC layer assumptions: simDust leaves transmission collisions to be handled by lower MAC layer protocols and does not take them into account. It is our intention to consider them in next versions of this simulator.

Energy assumptions: We have included an energy dissipation scheme for both protocols implemented. In particular, we have assumed that a particle consumes a standard amount of energy E_{elec} per round while being awake. Furthermore, in each transmission energy fading is proportional to the square of the distance. For each receive, a node is credited with an amount of energy that practically reflects the power needed to run the transceiver circuit namely E_{elec}. Finally, a particle can switch over to the sleep state, to save energy. No energy consumption virtually takes place while the particle remains in the sleep mode, since it keeps its transceiver and its sensors shut down.

Size of messages: Regarding the communication cost in terms of the bits transmitted per message, we assume that information messages require 1Kbyte, plus a 40 bits header, containing a 32 bit identifier for the sender particle and an 8 bit code that determines the message type.

SW-PFR specific assumptions: We assume that the protocol’s execution is preceded by an initialization phase, where each particle discovers all the neighboring particles that are both within transmission range and within the cycle sector demarcated by a predefined angle value. The transmission range of each particle’s transmitter is set to be fixed and preferably of a value significantly smaller than the network diameter. The sensed events that can trigger a data propagation in the network can occur at any given round. Additionally, in the process of embedding a sleep-awake scheme in the SW-PFR protocol, we have used two configurable variables that effectively define the ratio between the duration of the sleep and awake periods. Finally, the required memory where each particle stores the events it has previously seen is considered to be of infinite capacity for reasons of keeping the implementation complexity considerably low.

H-TEEN specific assumptions: Our hierarchical implementation uses four levels of hierarchy. We used a relatively large interval of 24 rounds between successive cluster set-up rounds. Finally, we have calculated the size of the transmission schedule that is broadcast by each cluster-head as a header of 40 bits followed by 32 bits (size of particle ID) times the number of particles included in that particular cluster.

7 Efficiency Measures

On each execution of the experiment, let K be the total number of crucial events (E_1, E_2, \ldots, E_K) and k the number of events that were successfully reported to the sink S. Then, we define the success rate as follows:

Definition 3 The success rate, P_s, is the fraction of the number of events successfully propagated to the sink over the total number of events, i.e. $P_s = \frac{k}{K}$.

Another crucial efficiency measure is the average available energy of each particle in the network over time:

Definition 4 Let E_i be the available energy for the particle i. Then $E_{avg} = \frac{\sum E_i}{n}$ is the average energy per particle in the smart dust network, where n is the number of the total particles dropped.
Finally, we consider the number of alive particles as a measure of efficiency and the network survivability in each case. As in case of the energy, the more particles are alive the better. A source of valuable information is also the particular manner that particles die over time.

Definition 5 Let h_A (for “active”) be the number of “active” sensor particles participating in the sensor network.

We also give another definition concerning the way the events are generated in the network. This parameter critically influence the efficiency measures defined above.

Definition 6 Let I_s be the injection rate, measured as the probability of occurrence of a crucial event during a round.

8 Simulation Results

We evaluate the performance of the two protocols by conducting a comparative experimental study. In our experiments, we generate a variety of sensor fields. The field size ranges from 200m by 200m to 1500m by 1500m. We note that these network sizes studies are significantly larger than those usually investigated in the relevant research and enable a study of the scalability of the network. In these fields, we drop $n \in [500, 3000]$ particles randomly uniformly distributed on the smart-dust plane.

We start by examining the success rate of the protocols with respect to the network size, for two different injection rates I_s (0.05 and 0.8). We focus on two extreme values to investigate the divergent protocol behavior in corresponding extreme settings.

![Figure 5: Success rate for various network sizes for injection rates 0.05 and 0.8.](image)

In figure 5 the success rate of the protocols is depicted as the network size increases. It is clear that for small dimensions (200mx200m, 500mx500m) both protocols achieve high performance (≥ 0.85), while performance drops as networks size increases. However, SW-PFR’s success rate remains quite high (i.e. ≥ 0.7) even for very large networks (i.e. 1500mx1500m), while SW-PFR seems to be well in both the case of low and high event generation rates. On the contrary, H-TEEN seems to perform poorly in the case of frequent events since its success rate drops below 0.3 in that case.

We continue, by examining the success rate of the protocols with respect to the I_s for two different network sizes (Figure 6). Initially, for low injection rates, in small networks (500mx500m), both protocols behave almost optimally achieving a success rate close to one and decrease as injection rate increases. However, for larger network size the impact of the injection rate seems to be more significant. In particular, H-TEEN’s success rate drops from 85% to almost 30%, while PFR, even though its initial success rate is about 70%, seems to be less affected by the increase in injection rate.

The apparent dependence of TEEN protocol’s performance from the injection rate is due to its clustering scheme. As injection rate increases a cluster head is responsible for delivering more events, thus it consumes more energy during its leadership. If injection rate becomes too high, cluster heads are more likely to exhaust their energy supplies.
before a new cluster head is elected. When a cluster head “dies”, the cluster ceases to function and all events that occur on that cluster are lost until a new cluster head is elected. Furthermore large network sizes worsen this phenomenon because more energy is required from the cluster head to propagate an event to the sink (since the energy spent in one hop is of the order of the square of the transmission distance).

On the other hand the SW-PFR protocol is mostly unaffected by high injection rates but influenced by larger network sizes. This is due to its multihop nature, since more hops are required for the propagation of an event.

We move on by examining the average energy consumed per particle in time. We remind the reader that each particle dropped to the smart-dust plane has 1Joule of energy to its disposal. Figure 7 depicts the average amount of energy that each particle has available in each round, for network areas of (500mx500m) and (1000mx1000m) where the injection rate $I_s = 0.05$. Note that in both cases the Success Rate, P_s, is over 80%. For the case of the small network H-TEEN consumes less energy than SW-PFR, while on the larger network, SW-PFR seems less expensive.

To explain this phenomenon we have to consider the nature of the event propagation of the two protocols. The H-TEEN protocol uses a constant number of hops to propagate the messages, having its cluster heads transmitting directly to the next level of the hierarchy, while SW-PFR uses short-ranged multihop transmissions to deliver the message to the sink. When the network area is fairly small the transmissions of cluster heads cost less than the multiple multihop transmissions of SW-PFR. However, when the network area increases, the cluster heads have also to increase its transmitting power by an order of R^2, as the radio range R increases, in contrast to SW-PFR where the multihop transmissions increase linearly. So, for the case of large area networks SW-PFR seems more appropriate than H-TEEN.
Finally, we examine the way the number of alive particles varies with time. In Figure 8 the number of alive particles is presented for network sizes 500m by 500m and 1000m by 1000m, for injection rate $I_s = 0.05$. Note that more particles are dropped in a 1000m by 1000m network, the more or less deal with similar densities in both protocols.

We notice that for the H-TEEN protocol for both network sizes the number of alive nodes decreases at a constant rate, whilst for the SW-PFR protocol there is a sudden decrease in the number of alive particles. This observation depicts the property of the H-TEEN protocol to evenly distribute the energy dissipation to all the particles in the network. On the contrary, the SW-PFR protocol stresses more the particles which are placed closer to the sink, so at a point in time these particles start to “die” rapidly.

On the other hand, in the larger network area (1000m x 1000m) the particles in H-TEEN protocol “die” more rapidly than those of SW-PFR. This was expected because in H-TEEN protocol particles are forced to transmit in larger distances than those in SW-PFR, so they consume more energy and “die” faster. We should also notice the same behavior of SW-PFR as in fig. 8, from a point in time and on, particles start to die faster than before and this is because of the fact that SW-PFR stresses more the particles that lie near the sink forcing them to propagate the majority of the messages that occur in the smart-dust network.

For the SW-PFR protocol we adjusted some extra parameters such as the radio transmission range (R) and sleep-awake ratio (η), in order to achieve good performance for a fixed network density, while, the values of the parameters defined for the H-TEEN protocol are set as described in section 6. The choice of values for the SW-PFR protocol is very crucial for its performance (thus SW-PFR seems to more “programmable”) while the H-TEEN protocol seems to less benefit from adjusting its parameters. In Figure 9 we give an example of how the success rate of the protocol can vary for different values of the radio range (R) in a 500m by 500m network with 1500 particles. We notice that there is a strict area of the radio range where the protocol behaves well, while outside this area its performance drops quickly. Thus, we provide an indication of how to exactly adjust the radio range to get high success rate (i.e. for success rate at least 0.8, R should be between 35 and 60 m, in the particular setting.)

9 Towards a Hybrid Protocol

Overall, for the H-TEEN protocol the simulation suggests that in large area networks and when the number of layers in the hierarchy is small, TEEN tends to consume a lot of energy, because of long distance transmissions. On the other hand, when the number of layers increases, the transmissions become shorter, however there is a significant overhead in the setup phase as well as the operation of the network. Thus, H-TEEN exhibits a certain trade-off behavior with respect to the number, let it c, the numbers of layers used in the hierarchy. We here have implemented and evaluated the (rather intermediate) value c=4. We plan to further investigate, both by analytical and experimental means, this trade-off.

Furthermore, the main findings of this work are the following:
1. **SW-PFR** seems to be more energy efficient in networks covering large geographical areas. In such networks **H-TEEN** seems to be expensive.

2. On the other hand **H-TEEN** tends to be more efficient in small area networks and also it tends to somehow evenly distribute energy consumption among the particles locating the event.

In the light of the above two findings, we propose a possible *hybrid combination* of the protocols in large area networks. This hybrid protocol should have three distinct phases (we list below Phase 2 last in order, to better discuss how this intermediate phase works).

Phase 1: Initially, and for a sufficiently large part of the network area, **SW-PFR** is used to propagate data.

Phase 2: Since **H-TEEN**’s energy consumption characteristics heavily depend on the spatial distribution of event occurrence, and since **H-TEEN** better performs in the case of rather uniform event placement, we introduce an intermediate phase between Phase 1 (**SW-PFR**) and Phase 3 (**H-TEEN**). This phase may use a “load balancing” technique, such as randomization, to rather uniformly further propagate data, in order to avoid worst case behavior for the **H-TEEN** protocol that would arise if data transmissions reach the **H-TEEN** employment area around the same, more or less, cluster heads. This randomization can be implemented in the following way: the particles in the “phase 2” application area select the next particle to propagate data by randomly and uniformly choosing the angle of transmission and the transmission radius, in some range. We note that the details of this hybrid protocols’ design, i.e. how long each of the 3 phases should be, what is the range of the parameters (angle, radius) in the randomization phase etc, are quite complicated, so we plan to study them and implement and evaluate the hybrid protocol in a separate work.

10 Using Varying Transmission Range

Further to choosing between long or short transmissions, certain additional trade-offs are introduced by choosing between fixed or varying transmission range. In particular, we wish to focus on the following important properties:

(a) **Obstacle avoidance:** This may be achieved by increasing transmission range when an obstacle is encountered.

(b) **Fault tolerance:** Increasing range may reach active sensors when the current range does not succeed, either because of faulty or “sleeping” sensors close to sensor which is currently transmitting or in the case of very low network densities.

(c) **Network longevity:** An interesting aspect of the problem under investigation is the lifetime of particles, since it affects the ability of the network to propagate data to the sink, because available routes are reduced as more particles consume their energy resources and “die”. Varying transmission range may bypass the sensors lying close to the sink, that tend to be overused in case of fixed range transmissions, since all data passes through them in this case. The same holds also in the case of a geographical concentration of event generation.
Based on the above, we now propose the Variable Transmission Range Protocol (VTRP), where each particle \(p' \) that has received \(\text{info}(E) \) from \(p \) (via, possibly, other particles) does the following:

Phase 1: The Search Phase. It uses a periodic low energy broadcast of a beacon in order to discover a particle nearer to \(S \) than itself. Among the particles returned, \(p' \) selects a unique particle \(p'' \) that is “best” with respect to progress towards the sink. More specifically, the particle \(p'' \) that among all particles found achieves the bigger progress on the \(p'S \) line, should be selected (see Fig. 2).

Phase 2: The Direct Transmission Phase Then, \(p' \) sends \(\text{info}(E) \) to \(p'' \) and sends a success message to \(p \) (i.e. to the particle that it originally received the information from).

Phase 3: The Transmission Range Variation Phase. If the search phase fails to discover a particle nearer to \(S \), \(p' \) enters the transmission range variation phase. More specifically, each particle maintains a local counter \(\tau \), with initial value \(\tau = 0 \). Every time the search phase fails, this counter is increased by 1. Thus \(\tau \) is an indication of the number of failures to locate an active particle. Based on \(\tau \), the particle modifies its transmission range \(R \) according to a change-function \(\mathcal{F}(\tau) \). We here consider four different functions for varying the transmission range:

(a) **Constant Progress.** This choice is more suitable in the case where the network is comprised of a large number of particles and thus, a small increment of the transmission range will probably suffice to locate an active particle. Based on this assumption, the change-function is defined as follows:

\[
\mathcal{F}(\tau) = R_{\text{new}} = R_{\text{init}} + c \cdot \tau ,
\]

where \(c \) is a constant set to a small value, i.e. \(c = 10 \). This is considered as the “basis” VTRP and is denoted as VTRP\(_c\).

(b) **Multiplicative Progress.** In this case, the transmission range of the particle is increased mode drastically. We call this variation of our protocol VTRP\(_m\).

\[
\mathcal{F}(\tau) = R_{\text{new}} = R_{\text{init}} + R_{\text{init}} \cdot m \cdot \tau ,
\]

where \(m \) is a constant set to a small value, i.e. \(m = 3 \). This drastic change has bigger probability of finding an active particle, however it leads to higher energy consumption.

(c) **Power Progress.** In this case, the transmission range of the particle is increased even faster using the following scheme:

\[
\mathcal{F}(\tau) = R_{\text{new}} = R_{\text{init}} + R_{\text{init}}^{\sqrt{\tau+1}}
\]

We call this protocol VTRP\(_p\).

(d) **Random Progress.** When the density of the network is not known in advance, we use randomization to avoid bad behavior due to the worst case input distributions for each choice above (i.e. small modifications to the transmission range in VTRP\(_c\) in case of low densities and big modifications resulting from VTRP\(_p\) in high particle densities). We call this variation VTRP\(_r\), and is defined as follows:

\[
\mathcal{F}(0) = R_{\text{init}} \\
\mathcal{F}(\tau) = \mathcal{F}(\tau-1) + R_{\text{init}} \cdot r ,
\]

where \(r \in (0, 8] \), a random value

The analysis of the properties of the VTRP protocol (efficiency, correctness, fault-tolerance, etc.) is a quite complicated task. In [2] we presented some preliminary results (based on simulation). We intend to further study these properties (extending the simulation findings and carrying onto a rigorous analysis) in future work.

11 Closing Remarks

We presented in this work two extended versions of the protocols PFR and TEEN, i.e. SW-PFR and H-TEEN, for information propagation in sensor networks. We have implemented the new protocols and conducted an extensive comparative experimental study on networks of large size to validate their performance and investigate their scalability. Our results basically show that the SW-PFR protocol achieves high success rates under specific conditions of network
density and radio range (R), it is resistant to frequent events and operates efficiently in large area networks. On the other hand, the H-TEEN protocol achieves high success rates in small area networks but there is a deterioration of its performance when the size of the network or the injection rate increases.

We plan to study different network shapes, various distributions used to drop the sensors in the area of interest and the fault-tolerance of the protocols. Finally, we plan to provide performance comparisons with other protocols mentioned in the related work section, as well as implement and evaluate hybrid approaches that combine the SW-PFR and H-TEEN protocols in a parameterized way exploiting their relative advantages. We note that the latter task (the hybrid protocol) is highly complicated, so we plan to do it in a separate work.

References

