Finding Cooperative (tag-based) Stereotypes with Semi-Automated Searching.

Hales, D.

2005
Finding Cooperative (tag-based) Stereotypes with Semi-Automated Searching

David Hales
University of Bologna
Mura Anteo Zamboni 7, Bologna, Italy
dave@davidhales.com

Abstract

An Artificial Society model in which cooperation between agents is mediated by stereotypes is presented. The stereotypes evolve memetically via “cultural learning”. The model specifies a large number of exogenous parameters. Two methods of exploring this very large parameter space are applied in the search for regions that produce high levels of agent cooperation. A region is located in which a novel cooperation process is identified based on the formation of agent “tag” groups.

1 Introduction

Firstly, we introduce the motivation for the Stereo-Lab artificial society (section 2), then we outline the computational implementation which specifies a number of exogenous parameters (section 3). We apply two methods to explore the parameter space of the model to locate regions in the space producing high levels of cooperation between agents (section 4). We identify a region in which a novel form of cooperation forming process (based on group formation) is found. This process appears to harness a mimetically driven emergent stereotyping mechanism. We consider both the novel cooperation mechanism and the methodology of semi-automatically searching the parameter space as of interest to those interested in emerging complex socio-cognitive structure in artificial societies.

2 Should You Trust a Hippie?

In human societies people often have to interact cooperatively with others who they have never met before and therefore have no specific knowledge of. In those situations how does an individual select an appropriate behaviour? Specifically, in an economic transaction where trust is involved, when should a stranger be trusted? When should a stranger be cheated? Consider the following scenario:

“Imagine you are driving across country for a family vacation when your car overheats. You have the car towed to a service station that has a repair shop. The mechanic says you need an expensive new radiator. It is a hot and humid August day, the kids are cranky, and you are in no mood to pay to have your car towed to another shop for a second opinion. You have no assurance that the mechanic is telling the truth or will charge a fair price or do proper work. What should you do? Meanwhile, the mechanic is equally worried that an out-of-town motorist may skip out on a bad check.” (Macy & Skvoretz, 1998).

In this scenario, both you and the mechanic will benefit if a fair deal can be struck. However, how can either party trust the other not to cheat? What knowledge can you both draw on to make a decision? One mechanism for coping is to make use of “social cues”. Both you and the mechanic assess the situation, observe each other and draw on socially or individually gained knowledge to come to a decision on how to act. If a “similar” mechanic in the past did a poor job and overcharged then you might be tempted to write a bad cheque since “this guy looks like a cowboy mechanic”. Conversely, if the mechanic observes that you are wearing a caftan and have long hair he may conclude you are a “no-good hippie” who is simply not to be trusted. He may overcharge for poor work or worse may refuse to help you. The mechanic may have never met a “no good hippie” in person before but those he socially interacts with have told him anecdotes of bad deeds. He has been told to watch out for people like this. The point is that individuals may judge others based on personal experience or socially learned beliefs and socially learned beliefs may or may not have some relationship to some real experience, they could simply be myths of uncertain origin and veracity.

2.1 Cues, Stereotypes and Social Distance

Stereotypes are defined here narrowly as knowledge that associates sets of attributes with sets of individuals based purely on observable characteristics (social cues, cultural markers or tags). It is assumed that stereotypes are constructed, maintained and evolved through social interactions between individuals over time. It is also assumed that different individuals may possess different (even conflicting)
stereotypes and that the processes that generate them are due to the need for cognitive efficiency and the selection of social strategies based on very limited information. The social psychological literature refers to this characterisation of stereotyping as the “information processing error” explanation (Oakes, P. et al., 1994). This is opposed to the “kernel of truth” position that proposes stereotypes are based (at least in part) on true group differences embedded in the structure of society. However, it can be argued that the "structural differences" from which stereotypes may be generated may themselves be the result of processes involving stereotyping (among other cognitive and social processes) and hence are reflexively related rather than simply reflexively related or false. Social cues in the form of dress, accent, physical characteristics etc. may be used by individuals to make comparisons of “social distance” between themselves and others. It is well documented that individuals often prefer to associate with others who are similar to themselves (Tajfel et al., 1971). Social cues therefore may often be used as mechanisms to enforce forms of social exclusion (either economically or culturally) by creating in-groups and out-groups from populations of individuals. Some social cues (or tags) may be easily changed via social influence (e.g. dress or accent) but others are hard to change or disguise (e.g. sex or racial characteristics). So, two kinds of cues may be delineated: fixed traits and culturally learned traits. Either or both of these kinds of cues may be used in processes of social distance estimation. Extreme examples of such practices manifest themselves in communities such as the American Amish (Hostetler 1998). But less extreme forms of social and economic exclusiveness permeate most societies, often involving sets of overlapping, emerging and dissolving groupings. Numerous social psychological studies (Oakes et al., 1994; Leyens et al., 1994) find that individuals within groups are highly oriented towards their own group both in terms of actively harmonising their beliefs and behaving in a more altruistic way towards in-group members (Kramer & Brewer, 1984) and adapting stereotyped and negative attitudes towards out-group members (so called “in-group bias”).

2.2 Salient Features

From the above discussion and example scenario some salient features may be outlined:

• Agents learn socially and individually.
• Interact with strangers is often required.
• Mutually beneficial interaction between strangers may require trust.

• Agents may evaluate strangers with reference to observable social cues.
• The social cues may be culturally learned and propagated.
• Agents often prefer to interact with those holding similar cues.

The StereoLab artificial society attempts to minimally capture these salient features. The Prisoner’s Dilemma game (see section 3.1 below) models trust-based interactions and social learning and the propagation of cues and stereotypes is modelled via a minimal “memetic” process. Exclusion practices based on cues are captured by the biasing of game and cultural interactions based on tags. Tags may be fixed or change via cultural interaction. In the following section we describe the computational model in detail.

3 The StereoLab Artificial Society

The aim of the StereoLab design is to capture, in a highly abstracted form, the salient features outlined in section 2.2 above. Throughout the design of the society, important assumptions have been parameterised. Firstly we introduce how a certain kind of interaction based on trust can be modelled as the Prisoner’s Dilemma game.

3.1 Trust as a Game

The Prisoner's Dilemma (PD) game models a common social dilemma in which two players interact by selecting one of two choices: Either to “cooperate” (C) or “defect” (D). From the four possible outcomes of the game, payoffs are distributed to the individuals. A reward payoff (PR) and a punishment payoff (PP) are given for mutual cooperation and mutual defection respectively. However, when individuals select different moves, differential payoffs of temptation (PT) and sucker (PS) are awarded to the defector and the cooperator respectively. Assuming that neither player can know in advance which move the other will make and wishes to maximise its own payoff, the dilemma is evident in the ranking of payoffs: PT > PR > PP > PS and the constraint that 2PR > PT + PS. Although both players would prefer PT, only one can attain it. No player wants PS. No matter what the other player does, by selecting a D move a player ensures he gets either a better or equal payoff to his partner. In this sense a D move can’t be bettered since playing D ensures that the defector can not be suckerised.

The selection of a cooperative strategy by a player in the PD can be seen as a form of trust. The player exposes itself to exploitation by defection.

1 By “reflexively” related, I mean that the stereotyping process affects the very groupings that are represented by stereotypes.
may be both unchanging and fixed (the interpretation being of unchanging physical characteristics) or culturally learnable and mutable (the interpretation being of cultural traits such as style of dress).

3.3 Agents

Individuals are represented as simulated agents displaying tags represented as binary bit strings (social cues). Agents encounter each other dyadically and play a single round of the PD game that may be thought of as an economic interaction requiring trust. Agents store a set of rules that map tag patterns to PD strategies (stereotypes). Figure 1 shows a schematic diagram of a StereoLab agent. Cultural interaction between agents also occurs dyadically and involves the propagation of tags and rules (treated as memes). Agents inhabit a one-dimensional ring comprising a set of independent territories that may contain any number of agents including none (see figure 2). Agents comprise a set of observable tags (bit strings), a set of behavioural rules and some state (memory) associated with each rule. The number of bits and rules stored are specified by exogenous parameters. Some proportion of the tag bits (specified by an exogenous parameter) and all rules are treated as memes. This means that they can be communicated and mutated. For each meme held by the agent maintains a “confidence value” [0..1] which indicates how “psychologically attached” the agent is to the meme. Cultural interactions and periodic satisfaction tests affect confidence values. A proportion of the tag an agent holds may be fixed. The fixed bits never change. The proportion of fixed bits is specified by an exogenously defined parame-

![Figure 1: An agent in the StereoLab. An agent consists of a set of tag bits (observable by other agents) and a set of rules (stereotypes) mapping bit patterns to game strategies. Each tag and each rule has an associated confidence value.](image)

![Figure 2: The StereoLab interaction environment. Agents inhabit a ring of connected territories. Each territory may contain any number of agents (including none). An agent culturally and game-interacts over some proportion of territories specified by exogenously set parameters.](image)
ter (BF). Figure 1 shows a schematic diagram of an agent. In the following sections the components of the agent are described.

3.3.1 Tags and Rules

In order to implement “stereotyping”, agents have the ability to generalise over observable tags using their behavioural rules. A simple form of pattern matching achieves this. Agents store some fixed number of rules that map patterns of observable tags to strategy representations.

The tag pattern is a string of the same length as the tag bit string but may comprise digits of zero (0), one (1) and “don’t care” (#). A “don’t care” digit matches both zero and one digits. This mechanism allows for generalisation. A tag pattern containing all “don’t care” (#) digits, would match all possible tags. Since agents in certain circumstance may mutate the tag pattern this allows for generalisation and specialisation of stereotypes to take place. That is, rules may be widened or narrowed in their applicability. The number of rules an agent can hold is specified by an exogenously defined parameter (M). M is the same for all agents within a given society.

3.3.2 Strategies and Mutation

Strategies are represented as pairs (p,q) of real values in the range [0..1] as used in (Riolo, 1997; Nowak & Sigmund 1992). The (p) value represents the probability that the agent will cooperate given that the opponent cooperated on the last application of the rule. The (q) value represents the probability that the agent will cooperate given that the opponent defected on the last application of the rule. Therefore, for each rule an agent has an associated memory storing either C or D that indicates the move made by the opponent when the rule was last used. Initially these memories are set randomly. The (p,q) strategy representation is stochastic with a memory of one. It captures many variations of reciprocity and provocability: (1,0) represents tit-for-tat-like reciprocity (Axelrod 1980), (0,0) represents pure defection and (1,1) represents pure cooperation. Consequently, though agents actually play single round games, these are played by the agents as ongoing games of the Iterated Prisoner’s Dilemma (IPD) as if all agents in the category specified by the tag pattern in the rule were a single agent.

Given this arrangement it is possible for an agent to play tit-for-tat against a whole group of other agents as specified by the tag pattern associated with the strategy. This captures the notion that an agent may punish an agent within a stereotyped group for something that another agent from that same group did in the past. We should note that intuitively it appears that such a process would make cooperation very hard to achieve.

Agents start with a set of randomly generated memes (tags and rules). Any fixed tag bits are also randomly initialised. Agents can only change their memes by mutation or by accepting a meme from another agent via communication. After a satisfaction test (see below) agents examine each of their memes to determine if mutation should take place.

The susceptibility of a rule to mutate is inversely proportional to the associated “confidence” value. Since the LHS of a rule (pattern label) is a bit string (perhaps including “don’t care” symbols), mutation takes the form of changing with probability MT (where MT is an exogenously defined parameter) each digit from it's current value to one of the other two values with equal probability. When a specific bit value (0 or 1) is replaced by a “don't care” (#) digit then the rule is generalised. Conversely when a “#” is replaced by a “0” or “1” the rule is specialised. On the RHS of the rule, the (p,q) strategy representation, mutation takes the form of changing, with probability MT, the values of each variable by some +ve or -ve value in the range [-MS..+MS]. MS is an exogenously defined parameter. Final values of p or q which are > 1 or < 0 are reset to 1 and 0 respectively. After either mutation or communication changes a rule the confidence associated with the rule is set to a random value. Here the notion of “cultural innovation” is minimally captured. An agent will tend to mutate a rule (stereotype) if its confidence in that rule is low.

3.3.3 Cultural Interaction

Each rule and (non-fixed) tag bit held by an agent is viewed as a meme. The tag bits can be considered as “surface memes” or “social cues” visible to other agents. The rules can be considered as “hidden memes” which are not visible to others. Both are communicated (i.e. propagated from agent to agent) in the same manner. Two agents are selected for cultural interaction using the selection method described previously. Given two agents have been selected, one becomes the sender, the other the receiver (decided by a fair coin toss). Each meme held by the sender is proposed to the receiver with a probability of PM (this is an exogenous parameter, 0 indicates no meme propagation, 1 indicates all memes are proposed). The fundamental mechanisms of meme spread are those of:

- Replication: the sender replicates a meme to the receiver overwriting an existing meme.
- Reinforcement: the receiver already possesses the meme proposed by the sender and this results in an increase in confidence associated with that meme by the receiver.
• Repelling: the receiver is likely to reject an attempted replication when the associated confidence value of the meme to be overwritten is high.

In order to implement such mechanisms each agent must possess the ability to classify its memes into one of three types with respect to the proposed meme: a) Identical memes - which can be reinforced; b) Contradictory memes - which need to be removed if the new meme is accepted; c) Other memes - which are neither identical nor contradictory. Rules (stereotypes) are deemed to be identical if both the pattern and the strategy match exactly and contradictory if the patterns match exactly but the strategies don't. In this latter situation the rules are considered contradictory because they would both fire for an identical set of opponents but give different strategies to apply. The process of meme propagation involves the steps shown in figure 3.

3.3.4 Game-interaction

Game-interaction involves the pairing of two agents for a game of the one-shot PD. Two agents are selected for game-interaction with relevant tag and spatial biasing mechanisms as previously described. Each agent decides whether to cooperate or defect in the following way (see figure 4):

<table>
<thead>
<tr>
<th>Meme propagation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>The sender proposes a meme to the receiver</td>
</tr>
<tr>
<td>IF the receiver holds an "identical" meme THEN</td>
</tr>
<tr>
<td>receiver increases associated confidence (reinforcement)</td>
</tr>
<tr>
<td>basis</td>
</tr>
<tr>
<td>IF the receiver holds a "contradictory" meme THEN</td>
</tr>
<tr>
<td>attempt replication - replacing the contradictory meme</td>
</tr>
<tr>
<td>slugs</td>
</tr>
<tr>
<td>receiver selects a held meme at random</td>
</tr>
<tr>
<td>attempt replication - replacing the chosen meme</td>
</tr>
<tr>
<td>spurt</td>
</tr>
<tr>
<td>ENDIF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attempt replication:</th>
</tr>
</thead>
<tbody>
<tr>
<td>The receiver draws a random number [0, 1]</td>
</tr>
<tr>
<td>IF draw > confidence associated with the meme THEN</td>
</tr>
<tr>
<td>receiver overwrites meme with the sender's meme (replication)</td>
</tr>
<tr>
<td>slugs</td>
</tr>
<tr>
<td>receiver keeps its meme intact (reject)</td>
</tr>
<tr>
<td>spurt</td>
</tr>
<tr>
<td>ENDIF</td>
</tr>
</tbody>
</table>

Figure 3. The steps involved in the propagation of a meme from one agent to another. During cultural interaction between two agents the sender propagates each of its memes with PM probability.

- Each agent reads the other’s tag string.
- Using this tag each agent searches its set of rules.
- Each rule with a LHS tag pattern that matches the tag is marked as "active".
- Each "active" rule is assigned a score based on the number of actual bits (1 or 0) that match (specific rules are therefore scored higher than general rules).
- The rule with the highest score is "fired" and the appropriate action performed as dictated by both the strategy represented on the RHS of the rule and the associated memory.
- If more than one rule has the same highest score (i.e. there is a tie) then the rule with the highest confidence is used. If more than one rule has the same highest confidence then a random selection is made between them. There will always be at least one “active” rule since each agent is forced to maintain a default rule - that being, all “don’t care” states on the LHS.

3.3.5 Satisfaction Tests and Confidence Values

Confidence values are changed during cultural interaction and periodically through the application of an all-or-nothing satisfaction test. If an agent is satisfied then all of its confidence values are increased by some factor, otherwise all values are reduced by some factor. An agent is said to be “satisfied” if its average payoff from game-interactions is above some threshold (T) since the last satisfaction test. An agent performs a satisfaction test with some probability (P) after each game-interaction. Both T and P are exogenous parameters. Such a scheme implements a crude form of reinforcement learning: if an agent is satisfied it increases the confidence of all memes (by a factor of CI) otherwise confidence is reduced (by a factor of CR). Both CI and CR are exogenously defined parameters. Since the outcome of each game-interaction results in an instant payoff it would not be difficult to accumulate payoffs against the rules that generated them. In this way, confidence values could be differentially updated. However, it is one of the assumptions of the Stereolab society that agents are highly bounded in their reasoning and that they don’t know which individual memes are responsible for satisfactory outcomes (Simon 1990).

3.3.6 Tag and Spatial Biasing

Both spatial and tag biasing may be employed during the selection of partners for both game and cultural interaction types. Tag biasing consists in rejecting a potential interaction partner based on the number of differing bits between two tags - tag distance. Exogenous bias parameters specify the extent of biasing for both game (BG) and cultural (BC) interaction. They indicate the maximum tag distance allowable before an interaction rejection is triggered. The total number of rejections allowed in succession by a single agent before interaction is forced is also specified as exogenously defined parameters (TG, TC).

Agents also limit their interactions to a subset of the population who are spatially close (within their “interaction window”). The justification for this is that cultural and economic interactions are often
localised spatially within real societies. Agents inhabit a one-dimensional space (see figure 2). Each end of the line is joined to form a ring topology. Along the line are a finite number of locations or “territories”. The number of territories is specified by an exogenous parameter (S). Each territory can hold any number of agents. Agents are distributed along the line initially at random from a uniform distribution. Both game (VG) and cultural interaction (VC) are mediated by independent “interaction window” size parameters. The largest interaction window specifies that agents in all territories are reachable from any other, the smallest indicates that only agents within the same territory can interact. This spatial arrangement allows for different cultural and game mixing methods to be implemented. From pure random mixing (when VG and VC are at a maximum) to highly restricted or niche mixing (when VG and VC are at a minimum). This parameterisation allows for a large set of different localisation types to be explored minimally in one dimension.

Both game and cultural interaction is dyadic. Each kind of interaction is implemented separately: the same pair of agents do not culturally and game-interact at the same time. Selection of a pair of agents for either kind of interaction follows the same pattern. Firstly an agent is selected from the population at random, then an interaction partner is selected at random from within the appropriate interaction window (implementing the spatial bias). Then tag bits are compared and the interaction partner is rejected if the tag bias constraint is not met. If interaction was rejected another interaction partner is selected. This re-selection is continued until an appropriate interaction partner is found, or until the maximum number of rejections is reached after which interaction is forced with the next randomly chosen partner.

3.3.7 Rule Consistency & Redundancy

A cultural interaction event is defined such that it cannot result in either contradiction or redundancy within an agent rule set. This does not mean that more than one rule from the rule set of an agent cannot match the tag pattern of a single agent. This is resolved via specificity, then confidence, then ultimately a random choice. “Contradictory” and “identical” rules are not allowed to coexist within a single agent rule set. The LHS of each rule must be unique. If a mutation event causes two LHS’ to become identical, it is reversed.

3.4 The Time Unit Cycle

In a given time unit the following events occur: with probability FG two agents game-interact; with probability FC two agents culturally interact; with probability FM one agent moves spatially. Movement involves a randomly selected agent moving to a randomly selected location. A single cycle of the system is defined as the number of time units required until 10N game-interactions have occurred, where N is the number of agents in the society (an exogenously defined parameter). FG, FC, FM and N are exogenously defined parameters.

![Figure 4. Game-interaction in the StereoLab. Game-interactions take place between selected pairs of agents. Each agent reads the others tag bits and fires a matching rule producing a particular game move (C or D).](image)

3.5 Summary of the Parameters

A summary of the exogenous parameters used by the StereoLab is given in table 1 below. The range column indicates the range from which values can be selected. Parameters with a single value in the range column indicate that they were fixed at the stated value for the work presented here. The satisfaction threshold T, the probability of a satisfaction test P and the Prisoner’s Dilemma payoffs PT, PR, PP and PS are all fixed. The fixing of the PD payoffs ensure they follow the PD constraints.

Note that the satisfaction threshold T and the probability of satisfaction testing P are fixed such that a game-interaction only produces satisfaction if an agent receives a temptation (PT) or reward (PR) payoff. Several of the parameters were fixed or limited in range for practical reasons. For example, N and S are fixed since large numbers of agents would significantly increase the time taken to execute a simulation run and very sparse distributions of agents in the environment (which would result from large values of S or small values of N) would limit the application of spatial biasing. Large values for B (the number of tag bits) also significantly increases execution time and small values (below two) would not allow for the proper functioning of the tag processes previously described. The minimum value for FG is set to 0.1 rather than zero since some level of game-interaction is required in order to obtain meaningful results.
3.6 What Kind of Society Has Been Proposed?

A moment’s reflection on the fixed parameters and the nature of the agents indicates that since the agents are satisfiers rather than optimisers, and since the satisfaction threshold T = PR (the reward payoff from a PD interaction), the dilemma of the PD is partially resolved. That is, if all agents choose to cooperate then all will be satisfied. The assumption expressed here is that for all StereoLab societies a state of total satisfaction through complete cooperation is possible. To put this in a more anthropomorphic way: each agent is happy to sustain a convention of cooperation if all other game-interaction partners encountered also cooperate. This assumption intuitively makes cooperation appear more likely. However, this can be contrasted with the previous assumption that agents may retaliate against others that are categorised within the same stereotype as a previous agent that was not cooperative - they make a generalisation. This generalisation means that agents subjectively stereotyped as members of the same group are treated as if they were a single individual. Taking both of these aspects into account the StereoLab consists of agents who (quite reasonably) are prepared to cooperate if all others do so but (perhaps less reasonably) may retaliate against any stereotyped group member when some member of that group does not cooperate. Such agent behaviour is very reasonable if the stereotyped groups are viewed as single agents rather than some subjectively categorised grouping.

4 Searching for Cooperation

We wish to find regions in the StereoLab parameter space where cooperation is high. The parameter space was quantised into discrete increments. For integer parameters the increment was set to 1. For parameters in the range [0..1] the increment was set to 0.1. This produces a discrete space, or grid, containing $5 \times 9 \times 10^2 \times 11^{13} = 1.55 \times 10^{17}$ possible unique points. In order to locate regions of high cooperation two methods were used. Firstly, decision tree induction (Quinlan, 1993) was used over a large random sample of points taken from the whole space (section 4.1). Secondly, k-means cluster analysis (Spal, 1980) was used with points found via hill-climbing in the space (see section 4.2).

4.1 Random Sampling and Tree Induction

The C4.5 classification algorithm (Quinlan, 1993) induces decision trees from a sample over a space of parameters (attributes) for a given categorical variable (in this case some category of observable phenomena of the simulation runs). The algorithm works by recursively splitting the parameter space along the dimension which produces the highest “information gain” (based on information theory) over the sample. Figure 6a shows schematically the application of C4.5 to a random sample producing class homogenous regions.

![Figure 6a](image)

Figure 6a. (a) Points sampled randomly from the parameter space can be processed to induce a set of category homogenous regions. (b) Cluster analysis applied to a sample of points found via hill-climbing may be used to find clusters.

The C4.5 decision tree induction algorithm was used to induce regions in the space as follows: Firstly the parameter space was randomly sampled (approxi-
approximately 10,000 points) in order to gain an empirical measure for the prevalence of cooperation within the space. Each point in the space represents a simulation run terminated after 100 cycles. One cycle is equivalent to 10N game-interactions (where N is the number of agents). The number of agents is fixed at 1012 for all experiments detailed here. Consequently a single simulation run is terminated after 101,000 game-interactions. This means the sample is a synthesis of approximately 1.01 x 108 individual game-interactions.

Game-interaction between agents involves pairs of agents playing single-round games of the PD. The amount of cooperation (CC) for a run is calculated as the proportion of mutually cooperative (i.e. when both agents cooperate) game-interactions over the last cycle. If agents selected strategies randomly, 25% of game-interactions would be mutually cooperative. Figure 7 shows a frequency distribution histogram of the CC measures for the random sample. As can be seen the majority of runs produced low levels of cooperation between agents (not much more than would be achieved if games were selected at random). However, the distribution shows some small number of runs producing high amounts of cooperation. For the purposes of analysis the top 10% of runs (based on level of cooperation) where classified as “high cooperation”, the rest as “low cooperation”. The C4.5 algorithm was applied to all the points from the sample and several regions were induced. The two “best” regions (based on the number of high cooperation points contained within them) are given below:

\[MT > 0, CR > 0, VG = 0, FM <= 0.1 \]

This region contained 150 points of which 80% were “high cooperation”. The parameter ranges indicate that:

- Meme mutation is non-zero
- Agents reduce confidence in their memes if they are not satisfied
- Game-interaction is limited to a single territory
- The frequency of agent movement between territories is low.

Inspection of individual runs indicates that agents have only a small set of game-interaction partners. This makes the search space for coordinated game-interactions small and so it is more likely that agents will find a cooperative convention. Agents are repeatedly meeting the same small number of agents and hence “learn” to find a mutually satisfactory set of behaviours.

\[MT>0, CR>0, VG>0, PM>0.4, FG<=0.1, FC>0.1 \]

This region contained 284 points of which 44% were “high cooperation”. The parameter ranges indicate that:

- Meme mutation is non-zero
- Agents reduce confidence in their memes if they are not satisfied
- Game-interaction is NOT limited to a single territory
- Cultural interaction events are, at least, one order of magnitude more frequent than game-interaction events.

A high frequency of cultural interaction between games gives the agents more scope to adapt and hence coordinate their game-interactions. Agents are exchanging many memes between game-interactions and therefore “learn” to find a mutually satisfactory set of behaviours.

4.2 Hill-Climbing and Cluster Analysis

In order to apply k-means cluster analysis, a set of points were located in the space2 that produced the maximum possible cooperation over the final (100th) cycle of the simulation run (see Figure 6b). Maximum cooperation indicates that all games played in the final cycle produced mutual cooperation. 39 such points were found by hill-climbing from 100 randomly chosen locations for 100 steps. This means that 10,000 individual runs were executed (an identical computational effort to that used for the random sample above). The points were normalised into unit space and clustered into 5 clusters using k-means clustering (where the objec-

2 The value of 101 agents was selected to be equal to the number of territories in the environment. The number of territories was set to an odd number so that an agent within a given territory had a balanced number of neighboring territories in either direction around the ring into which game and cultural interaction windows may extend.

3 A “weight” of 100 was used with the C4.5 algorithm. This means that the C4.5 was constrained to induce only regions with a minimum of 100 points within them.

4 The space used was increased over that used with C4.5. The real valued parameters were quantised with the finer increment of 0.01 (instead of 0.1) and the range of TG and TC was [1, 200].
tive function was Euclidean distance from cluster centroids). Various numbers of clusters were tried but beyond 5 the objective function did not decrease significantly.

As before, cooperation is high when game-interaction is limited to single territory (a single cluster was found to identify this region in the space). Cooperation was also high when BG and TG were high and BF was low (three distinct clusters had these values). In these clusters the biasing of game-interaction towards those sharing similar tag bits is high and the low value for BF indicates that the majority of tag bits are culturally learned. However, what process could produce high cooperation from such biasing?

5. Conclusion

Based on observation of individual runs from the clusters identified above the following is a hypothesis as to why tag biasing produces high cooperation:
- Tags combined with biasing create “game-interaction groups” sharing the same tags
- Cultural learning can change tags
- Hence agents “move” between groups
- Unsatisfied agents change tags, hence groups
- Groups satisfying their members (via cooperation) tend to stabilise and recruit
- Groups that do not satisfy tend to dissipate
- Hence cooperation is promoted

It is argued that this process may be viewed as a novel from of “cultural group selection”, where the “groups” are not extended in physical space but in “tag space”, this result bears some comparison with more abstract models of a biological rather than cultural nature (Hales, 2000a; Riolo, 1997).

Two distinct forms of game-interaction localisation (or “parochialism”) promote cooperation (among other mechanisms). These take the form of spatial parochialism - agents only playing games with others sharing the same territory and cultural parochialism - agents only playing games with others sharing the same or very similar tags. The C4.5 algorithm combined with random sampling identified the spatial mechanism as did k-means cluster analysis combined with hill-climbing. The cultural mechanism was only found by the clustering method but this was applied to an extended space (so this is not a true comparison of techniques).

References

